D7net Mini Sh3LL v1
Current File : /var/www/html/hpsc/../cvprlab/tags/../research/video/../soft/index.html |
<!DOCTYPE html>
<html lang="en-us">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="generator" content="Source Themes Academic 4.6.0">
<meta name="description" content="Soft Computing In Image Analysis The rise of several major seminal theories proposed in early 60’s including fuzzy logic, genetic algorithms, evolutionary computation, neural networks and their combination (the soft-computing paradigm in brief) allows to incorporate imprecision and incomplete information, and to model very complex systems, making them a useful tool in many scientific areas. These new methods may become more effective and powerful in real-world applications and can offer viable and effective solutions to some of the most difficult problems in image and pattern analysis.">
<link rel="alternate" hreflang="en-us" href="/research/soft/">
<meta name="theme-color" content="#2962ff">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/academicons/1.8.6/css/academicons.min.css" integrity="sha256-uFVgMKfistnJAfoCUQigIl+JfUaP47GrRKjf6CTPVmw=" crossorigin="anonymous">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.11.2/css/all.min.css" integrity="sha256-+N4/V/SbAFiW1MPBCXnfnP9QSN3+Keu+NlB+0ev/YKQ=" crossorigin="anonymous">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/fancybox/3.5.7/jquery.fancybox.min.css" integrity="sha256-Vzbj7sDDS/woiFS3uNKo8eIuni59rjyNGtXfstRzStA=" crossorigin="anonymous">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.15.10/styles/github.min.css" crossorigin="anonymous" title="hl-light">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.15.10/styles/dracula.min.css" crossorigin="anonymous" title="hl-dark" disabled>
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Montserrat:400,700%7CRoboto:400,400italic,700%7CRoboto+Mono&display=swap">
<link rel="stylesheet" href="/css/academic.css">
<link rel="manifest" href="/index.webmanifest">
<link rel="icon" type="image/png" href="/img/icon-32.png">
<link rel="apple-touch-icon" type="image/png" href="/img/icon-192.png">
<link rel="canonical" href="/research/soft/">
<meta property="twitter:card" content="summary">
<meta property="og:site_name" content="CVPR Lab">
<meta property="og:url" content="/research/soft/">
<meta property="og:title" content="Soft Computing In Image Analysis | CVPR Lab">
<meta property="og:description" content="Soft Computing In Image Analysis The rise of several major seminal theories proposed in early 60’s including fuzzy logic, genetic algorithms, evolutionary computation, neural networks and their combination (the soft-computing paradigm in brief) allows to incorporate imprecision and incomplete information, and to model very complex systems, making them a useful tool in many scientific areas. These new methods may become more effective and powerful in real-world applications and can offer viable and effective solutions to some of the most difficult problems in image and pattern analysis."><meta property="og:image" content="/img/logo.png">
<meta property="twitter:image" content="/img/logo.png"><meta property="og:locale" content="en-us">
<meta property="article:published_time" content="2018-11-14T19:02:50-07:00">
<meta property="article:modified_time" content="2018-11-14T19:02:50-07:00">
<title>Soft Computing In Image Analysis</title>
</head>
<body id="top" data-spy="scroll" data-offset="70" data-target="#TableOfContents" >
<aside class="search-results" id="search">
<div class="container">
<section class="search-header">
<div class="row no-gutters justify-content-between mb-3">
<div class="col-6">
<h1>Search</h1>
</div>
<div class="col-6 col-search-close">
<a class="js-search" href="#"><i class="fas fa-times-circle text-muted" aria-hidden="true"></i></a>
</div>
</div>
<div id="search-box">
<input name="q" id="search-query" placeholder="Search..." autocapitalize="off"
autocomplete="off" autocorrect="off" spellcheck="false" type="search">
</div>
</section>
<section class="section-search-results">
<div id="search-hits">
</div>
</section>
</div>
</aside>
<nav class="navbar navbar-expand-lg navbar-light compensate-for-scrollbar" id="navbar-main">
<div class="container">
<a class="navbar-brand" href="/"><img src="/img/logo.png" alt="CVPR Lab"></a>
<button type="button" class="navbar-toggler" data-toggle="collapse"
data-target="#navbar-content" aria-controls="navbar" aria-expanded="false" aria-label="Toggle navigation">
<span><i class="fas fa-bars"></i></span>
</button>
<div class="navbar-collapse main-menu-item collapse justify-content-start" id="navbar-content">
<ul class="navbar-nav d-md-inline-flex">
<li class="nav-item">
<a class="nav-link " href="/#demo"><span>Home</span></a>
</li>
<li class="nav-item">
<a class="nav-link " href="/#research"><span>Research</span></a>
</li>
<li class="nav-item">
<a class="nav-link " href="/#staff"><span>Staff</span></a>
</li>
<li class="nav-item">
<a class="nav-link " href="/#publications"><span>Publications</span></a>
</li>
<li class="nav-item">
<a class="nav-link " href="/#projects"><span>Projects</span></a>
</li>
<li class="nav-item">
<a class="nav-link " href="/#eve-ann"><span>Events & Announcements</span></a>
</li>
<li class="nav-item">
<a class="nav-link " href="/#code"><span>Code</span></a>
</li>
<li class="nav-item">
<a class="nav-link " href="/#links"><span>Links</span></a>
</li>
<li class="nav-item">
<a class="nav-link " href="/#contact"><span>Contact</span></a>
</li>
</ul>
</div>
<ul class="nav-icons navbar-nav flex-row ml-auto d-flex pl-md-2">
<li class="nav-item">
<a class="nav-link js-search" href="#"><i class="fas fa-search" aria-hidden="true"></i></a>
</li>
<li class="nav-item">
<a class="nav-link js-dark-toggle" href="#"><i class="fas fa-moon" aria-hidden="true"></i></a>
</li>
</ul>
</div>
</nav>
<article class="article">
<div class="article-container pt-3">
<h1>Soft Computing In Image Analysis</h1>
<div class="article-metadata">
<span class="article-date">
</span>
</div>
</div>
<div class="article-container">
<div class="article-style">
<h2 id="soft-computing-in-image-analysis"><strong>Soft Computing In Image Analysis</strong></h2>
<hr>
<p>The rise of several major seminal theories proposed in early 60’s including fuzzy logic, genetic algorithms,
evolutionary computation, neural networks and their combination (the soft-computing paradigm in brief) allows to
incorporate imprecision and incomplete information, and to model very complex systems, making them a useful tool in
many scientific areas. These new methods may become more effective and powerful in real-world applications and can
offer viable and effective solutions to some of the most difficult problems in image and pattern analysis.
The research activity concerns the design of a computational model that takes advantage of the notion of rough
fuzzy sets and learning to realize a system capable to efficiently cluster data coming from computer vision tasks.
The hybrid notion of rough fuzzy sets comes from the combination of two models of uncertainty like vagueness by
handling rough sets (Pawlak, 1985) and coarseness by handling fuzzy sets (Zadeh, 1975). Rough sets embody the idea
of indiscernibility between objects in a set, while fuzzy sets model the ill-definition of the boundary of a
sub-class of this set. Marrying both notions lead to consider, as instance, approximation of sets by means of
similarity relations or fuzzy partitions. The proposed multiscale mechanism, based on a model of rough fuzzy
sets is adopted to spread out local into more global information. The local features extracted by the consecutive
layers are combined in the output layer in order to cluster the output neurons by minimizing the fuzziness of the
output layer. This consitutes a fast algorithm for computing scale spaces, and apply them to image processing.
We report results for region-based image segmentation and edge detection by minimizing measures of fuzziness,
while texture segmentation is realized by optimizing parabolic-evolutive partial differential equations with edge
preserving smoothing properties. An efficient block coding scheme is also designed upon the rough-fuzzy model,
together with the adoption of machine learning techniques for vector quantization, as compared against Fuzzy
Transform and Fuzzy Relational techniques.<br>
The rough-fuzzy synergy is also adopted to better represent the uncertainty in colour image representation and
histogram based indexing mechanisms.
<br>
\</p>
<!-- raw HTML omitted -->
</div>
</div>
</article>
<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.min.js" integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo=" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery.imagesloaded/4.1.4/imagesloaded.pkgd.min.js" integrity="sha256-lqvxZrPLtfffUl2G/e7szqSvPBILGbwmsGE1MKlOi0Q=" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery.isotope/3.0.6/isotope.pkgd.min.js" integrity="sha256-CBrpuqrMhXwcLLUd5tvQ4euBHCdh7wGlDfNz8vbu/iI=" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/fancybox/3.5.7/jquery.fancybox.min.js" integrity="sha256-yt2kYMy0w8AbtF89WXb2P1rfjcP/HTHLT7097U8Y5b8=" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.15.10/highlight.min.js" integrity="sha256-1zu+3BnLYV9LdiY85uXMzii3bdrkelyp37e0ZyTAQh0=" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.15.10/languages/r.min.js"></script>
<script>hljs.initHighlightingOnLoad();</script>
<script>
const search_config = {"indexURI":"/index.json","minLength":1,"threshold":0.3};
const i18n = {"no_results":"No results found","placeholder":"Search...","results":"results found"};
const content_type = {
'post': "Posts",
'project': "Projects",
'publication' : "Publications",
'talk' : "Talks"
};
</script>
<script id="search-hit-fuse-template" type="text/x-template">
<div class="search-hit" id="summary-{{key}}">
<div class="search-hit-content">
<div class="search-hit-name">
<a href="{{relpermalink}}">{{title}}</a>
<div class="article-metadata search-hit-type">{{type}}</div>
<p class="search-hit-description">{{snippet}}</p>
</div>
</div>
</div>
</script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/3.2.1/fuse.min.js" integrity="sha256-VzgmKYmhsGNNN4Ph1kMW+BjoYJM2jV5i4IlFoeZA9XI=" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/jquery.mark.min.js" integrity="sha256-4HLtjeVgH0eIB3aZ9mLYF6E8oU5chNdjU6p6rrXpl9U=" crossorigin="anonymous"></script>
<script src="/js/academic.min.96cf4c3dc37ea60dbbd03c13a455f1f7.js"></script>
<div class="container">
<footer class="site-footer">
<p class="powered-by">
Powered by the
<a href="https://sourcethemes.com/academic/" target="_blank" rel="noopener">Academic theme</a> for
<a href="https://gohugo.io" target="_blank" rel="noopener">Hugo</a>.
<span class="float-right" aria-hidden="true">
<a href="#" class="back-to-top">
<span class="button_icon">
<i class="fas fa-chevron-up fa-2x"></i>
</span>
</a>
</span>
</p>
</footer>
</div>
<div id="modal" class="modal fade" role="dialog">
<div class="modal-dialog">
<div class="modal-content">
<div class="modal-header">
<h5 class="modal-title">Cite</h5>
<button type="button" class="close" data-dismiss="modal" aria-label="Close">
<span aria-hidden="true">×</span>
</button>
</div>
<div class="modal-body">
<pre><code class="tex hljs"></code></pre>
</div>
<div class="modal-footer">
<a class="btn btn-outline-primary my-1 js-copy-cite" href="#" target="_blank">
<i class="fas fa-copy"></i> Copy
</a>
<a class="btn btn-outline-primary my-1 js-download-cite" href="#" target="_blank">
<i class="fas fa-download"></i> Download
</a>
<div id="modal-error"></div>
</div>
</div>
</div>
</div>
</body>
</html>
AnonSec - 2021 | Recode By D7net